

KDD 2018

Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding

Kyle Hundman

Data Scientist, Group Lead

Copyright 2017 California Institute of Technology. U.S. Government sponsorship acknowledged

Overview

 Use LSTMs to incrementally predict incoming telemetry values using recent telemetry, commands, and EVRs (event records) as inputs into a model

- Where predictions substantially different from actual telemetry values, these are identified as potentially anomalous events
 - New nonparametric method for defining "substantially different"

Motivation

- Increasing data rates
 - SWOT, NISAR = 3-5 TB daily
- Smaller missions
 - Less people (cubesats, instruments) for ops
- High volumes of testbed data
- Condensed mission operations
 - Europa Lander = 20-30 days

- Investigative aspect
 - Focused, prioritized telemetry review
 - Help with causal fault analysis
 - What anomalies were detected leading up to a failure?
- Thresholding, expert systems
 - Reliance on expert knowledge
 - Custom
 - Not complete
 - Accuracy
 - Appropriate limits change

~40% of anomalies in experiments are of this nature

Anomaly Categories

Chandola et al. 2007

1. Point

2. Contextual

3. Collective (sequential)

Recurrent Neural Nets

- Memory (lossy summary)
- Parameter sharing
 - Extend model to apply to different lengths and generalize across time steps
 - Don't have to have separate parameters for each time value
- Recurrence
 - Always has same input size regardless of sequence length

$$m{h}^{(t)} = g^{(t)}(m{x}^{(t)}, m{x}^{(t-1)}, m{x}^{(t-2)}, \dots, m{x}^{(2)}, m{x}^{(1)})$$

= $f(m{h}^{(t-1)}, m{x}^{(t)}; m{ heta}).$

Ian Goodfellow, Yoshua Bengio, Aaron Courville, 2016. Deep Learning. MIT Press. http://deeplearningbook.org.

From RNNs to LSTMs (Goodfellow et. al, 2016)

Crucial addition (2000): Condition loop on context (with another hidden unit)

Ian Goodfellow, Yoshua Bengio, Aaron Courville, 2016. Deep Learning. MIT Press. http://deeplearningbook.org.

Formulation

h = historical window of errors ls = sequence length

Single-Channel Prediction

$$\mathbf{t} = \left\{ \begin{bmatrix} 106 \end{bmatrix}, \begin{bmatrix} 107 \end{bmatrix}, \begin{bmatrix} 108 \end{bmatrix}, \begin{bmatrix} 109 \end{bmatrix}, \begin{bmatrix} 110 \end{bmatrix}, \begin{bmatrix} 111 \end{bmatrix} \right\}$$
 Cmd sent to Module A (T/F) \bullet 0 \bullet 1 \bullet 0 \bullet 0 \bullet 1 \bullet 0 \bullet 1 \bullet 0 \bullet 1 \bullet 0 \bullet 1 \bullet 1 \bullet 1 \bullet 1 \bullet 2 Same command info for every channel
$$\hat{\mathbf{y}} = \left\{ \begin{bmatrix} 1.39 \end{bmatrix}, \begin{bmatrix} 1.39 \end{bmatrix}, \begin{bmatrix} 1.36 \end{bmatrix}, \begin{bmatrix} 1.48 \end{bmatrix}, \begin{bmatrix} 1.46 \end{bmatrix}, \begin{bmatrix} 1.41 \end{bmatrix} \right\}$$
 $\mathbf{e} = \left\{ \begin{bmatrix} 0.01 \end{bmatrix}, \begin{bmatrix} 0.01 \end{bmatrix}, \begin{bmatrix} 0.04 \end{bmatrix}, \begin{bmatrix} 0.04 \end{bmatrix}, \begin{bmatrix} 0.03 \end{bmatrix}, \begin{bmatrix} 0.01 \end{bmatrix}, \begin{bmatrix} 0.01 \end{bmatrix} \right\}$ $\mathbf{e}_s = \left\{ \begin{bmatrix} 0.16 \end{bmatrix}, \begin{bmatrix} 0.01 \end{bmatrix} \right\}$

Reconstruction Errors and Smoothing

Actuals and Prediction

Raw Reconstruction Error

Dynamic Anomaly Threshold

Smoothed errors

$$\mathbf{e}_{s} = [e_{s}^{(t-h)}, \dots, e_{s}^{(t-l_{s})}, \dots, e_{s}^{(t-1)}, e_{s}^{(t)}]$$

Candidate thresholds

$$\boldsymbol{\epsilon} = \mu(\mathbf{e}_s) + \mathbf{z}\sigma(\mathbf{e}_s)$$

Threshold

$$\epsilon = argmax(\epsilon) = \frac{\Delta \mu(\mathbf{e}_s)/\mu(\mathbf{e}_s) + (\Delta \sigma(\mathbf{e}_s)/\sigma(\mathbf{e}_s)}{n(\mathbf{e}_a) + n(\mathbf{E}_{seq})^2}$$

Definitions

$$\Delta\mu(\mathbf{e}_s) = \mu(\mathbf{e}_s) - \mu(\{e_s \in \mathbf{e}_s | e_s < \epsilon\})$$

$$\Delta\sigma(\mathbf{e}_s) = \sigma(\mathbf{e}_s) - \sigma(\{e_s \in \mathbf{e}_s | e_s < \epsilon\})$$

$$\mathbf{e}_a = \{e_s \in \mathbf{e}_s | e_s > \epsilon\}$$

$$\mathbf{E}_{seq} = \text{continuous sequences of } e_a \in \mathbf{e}_a$$

Dynamic Anomaly Threshold

Anomalous

Window size (h)

Dynamic Anomaly Threshold

Nominal

Reconstruction Error

Pruning

$$\mathbf{e}_{max} = [0.01396, 0.01072, 0.00994]$$

$$p = 0.1$$

Experiments – Incident Surprise, Anomaly Reports (ISAs)

- Scraped ISAs to find mentions of telemetry channels
 - Ex. "On DOY 192, in the time range from 09:21z through 10:47z, the following channels were found to have odd constant values: A-3, A-4, A-5, A-6, G-3"

- Labeled anomalous ranges for 112 unique ISA anomalies (MSL, SMAP)
- Significant portion of contextual anomalies (39%)

Validation: Predicting ISAs

- Identified all Incident, Surprise, Anomaly (ISA) reports that were apparent in telemetry (EHA) for SMAP and MSL
- Ran Telemanom system over time period surrounding each ISA to see if system would have detected the anomaly

Results

Thresholding Approach	Precision	Recall	F ₁ score		Recall - point	Recall - collective
Non-Parametric w/ Pruning $(p = 0.1)$				MSL	80.0%	42.1%
MSL	50.9%	63.6%	0.57	SMAP	97.7%	79.2%
SMAP	62.6%	91.2%	0.74	Total	91.3%	62.8%
Total	58.4%	80.4%	0.68			
						Collective anomalies
-	Over ½ of predicted anomalies were		all ISAs entified			are those that are not detectable by thresholds (0% recall
true positives		(~115 ir		gy. U.S. Government sponsors		ip

Results

Initial Pilot: SMAP

- Deployed end-to-end autonomous system
- Monitored ~750 core telemetry channels from Aug 2017 – May 2018
 - Detected multiple verified anomalous events
 - Partial eclipse (Feb 15, 2018)
- Radar (HPA) failure investigation
 - Ran system ~2 months prior to failure, detected many of same telemetry oddities that were identified during peer review process following failure

jpl.nasa.gov

System Architecture

Each container/process polls Elasticsearch for new data (No SQS/ SNS)

Machine 1 ML, processing

Sandbox

Docker containers, each assigned to individual CPU ~15 channels per container/CPU

CPU processing totally independent

Sends anomalies, "window" info to elasticsearch instance on machine 2

Deployed in AWS GovCloud

GPU

Offline training of models

3 docker containers -

EBS Volume Holds Elasticsearch docker Index

jpl.nasa.gov

Current Work: MSL

- Extending Telemanom to rovers/planetary missions
 - Prediction of telemetry is harder with more variety and irregularity of behaviors
 - Models need more training and detailed inputs surrounding commands and EVRs
- Targeting deployment of test system that will monitor Thermal, Power subsystems by end of FY2018
- Early progress
 - Detected Martian sandstorm early with small number of Thermal channels
 - Achieving very high prediction accuracy for thermal channels (~98%)

Foundation

Soil Moisture Active Passive (SMAP)

- Routine operations
- Major radar failure
- ~4,000 telemetry channels
 - Power, CPU, RAM, Thermal, Radiation, counters
 - 14 command modules
 - 4B values
- Challenges
 - Semi-supervised
 - Complexity, diversity
 - Scale

